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Abstract

Training deep neural networks (DNNs) with noisy labels of-
ten leads to poorly generalized models as DNNs tend to mem-
orize the noisy labels in training. Various strategies have been
developed for improving sample selection precision and miti-
gating the noisy label memorization issue. However, most ex-
isting works adopt a class-dependent softmax classifier that is
vulnerable to noisy labels by entangling the classification of
multi-class features. This paper presents a class-independent
regularization (CIR) method that can effectively alleviate the
negative impact of noisy labels in DNN training. CIR regu-
larizes the class-dependent softmax classifier by introducing
multi-binary classifiers each of which takes care of one class
only. Thanks to its class-independent nature, CIR is tolerant
to noisy labels as misclassification by one binary classifier
does not affect others. For effective training of CIR, we de-
sign a heterogeneous adaptive co-teaching strategy that forces
the class-independent and class-dependent classifiers to focus
on sample selection and image classification, respectively, in
a cooperative manner. Extensive experiments show that CIR
achieves superior performance consistently across multiple
benchmarks with both synthetic and real images. Code is
available at https://github.com/RumengYi/CIR.

Introduction
Deep Neural Networks (DNNs) have achieved remark-
able success in the computer vision community thanks to
the large-scale datasets with precisely human-annotated la-
bels (Chen et al. 2018) (Girshick 2015). However, collect-
ing such high-quality annotations is extremely expensive
and time-consuming, which may not be feasible in prac-
tice. Two alternative solutions are crowd-sourcing from non-
experts and online queries by search engines. Unfortunately,
these low-cost approaches inevitably introduce noisy la-
bels. Recent studies have shown that DNNs can easily over-
fit to noisy labels and result in poor generalization perfor-
mance (Zhang et al. 2017). Therefore, attention has been
concentrated on how to learn with noisy labels.

Recent studies have reached a consensus for learning from
noisy labels by jointly minimizing the negative impact of
noisy samples and maximizing the exploitation of clean
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(a) CIFAR-10: Clean (b) CIFAR-10: Noisy

(c) CIFAR-100: Clean (d) CIFAR-100: Noisy

Figure 1: Quantitative comparisons of class-independent
multi-binary classifier with standard class-dependent soft-
max classifier on CIFAR-10 and CIFAR-100 datasets with
clean and 80% symmetric noisy labels.

samples. An active research direction is training DNNs with
selected or reweighted training, where the challenge is to
design a proper criterion for identifying clean samples. Ex-
isting criteria are mainly divided into two types: loss-based
criterion (i.e., small-loss (Han et al. 2018) (Yu et al. 2019)
and Gaussian Mixture Model (GMM) (Li, Socher, and Hoi
2020)) and consistency-based criterion (i.e., prediction con-
sistency between two networks (Wei et al. 2020) (Liang
et al. 2022) or two views (Yi and Huang 2021)). Although
promising performance gains have been witnessed by em-
ploying these sample selection strategies, they heavily rely
on the predictions from DNNs commonly trained with soft-
max cross-entropy loss. However, the standard softmax clas-
sifier is sensitive to noisy labels due to its class-dependent
property, i.e., the misclassification of one class penalizes the
activation on others (Chen et al. 2022) (Chen et al. 2019),
which not only outputs misleadingly high confidences on
noisy data, but also affects the training of other classes, and
eventually degrades the purity of the selected clean samples.

Given this insight, we propose a novel Class-Independent
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Regularization (CIR) by introducing multi-binary classifier
for sample selection, which reformulates the K-way multi-
class classification into K binary classification. Specifically,
each binary classifier learns to distinguish each individual
class versus all the rest of classes together. Due to the nonex-
clusive activation across different classes, multi-binary clas-
sifier are class-independent and more robust for noisy labels.
To validate this claim, we design a toy experiment by train-
ing DNNs with the standard softmax classifier (SSC) and
the multi-binary classifier (MBC), respectively, on CIFAR
datasets with different noise rates. The experimental results
are shown in Fig. 1. When the training labels are clean, SSC
outperforms MBC slightly as illustrated in Fig. 1 (a) and (c),
demonstrating that SSC should be retained when classify-
ing samples with clean labels after the sample selection pro-
cedure. When the training labels are noisy, MBC surpasses
SSC with large margins under the higher noise rates as il-
lustrated in Fig. 1 (b) and (d), demonstrating the superior-
ity of MBC in learning with noisy labels during the sam-
ple selection procedure (more results are shown in the sec-
tion of experiments). Based on these two empirical demon-
strations, we further develop a heterogeneous adaptive co-
teaching strategy by coupling MBC in the sample selection
procedure and SSC in the image classification procedure. In
summary, our contribution is three-fold:

• We propose a class-independent regularization (CIR)
method that addresses the negative impact of the standard
class-dependent softmax classifier in noisy label learning
during sample selection.

• We specially design a heterogeneous adaptive co-
teaching strategy to cooperate the class-independent
multi-binary classifier with the standard class-dependent
softmax classification, which can mutually promote the
sample selection and image classification in a coopera-
tive manner.

• We conduct comprehensive experiments on the synthetic
and real-world noise benchmarks and the experimental
results demonstrate that our method achieves the state-
of-the-art performance.

Related Works
Learning from Noisy Labels
Learning from noisy labels can be divided into two cate-
gories (Huang et al. 2019): (1) directly training noise-robust
models and (2) detecting noisy labels and then reducing their
impacts. The former typically focuses on designing noise-
robust objective functions (Zhang and Sabuncu 2018) (Wang
et al. 2019) or regularizations (Zhang et al. 2020) to reduce
the effect of the overfitting on noisy labels, but these meth-
ods do not perform well under high noise ratios (Bai et al.
2021). In the solution of the latter, potential noisy labels are
first detected, and then removed them from the training set
or fed to the model after corrected them. However, the chal-
lenge is to find a proper criterion for identifying clean sam-
ples. Existing methods roughly fall on two types: loss-based
criterion and consistency-based criterion. The representative
approaches of the former are small-loss criterion (Han et al.

2018) (Yu et al. 2019), which selects a human-defined pro-
portion of small-loss samples as clean ones, and Gaussian
Mixture Model (GMM) criterion (Li, Socher, and Hoi 2020),
which fits GMM to the sample losses to model the distri-
bution of clean and noisy samples. The representative ap-
proaches of the latter are prediction consistency, which par-
titions the training data into clean and noisy subsets based
on the consistent predictions of two networks (Wei et al.
2020) (Liang et al. 2022) or two views (Yi and Huang 2021).

However, the above methods rely heavily on the predic-
tions from DNNs. We argue that the standard softmax clas-
sifier in DNNs is vulnerable to noisy labels due to its class-
dependent nature, i.e., the misclassified score of one class
suppresses the activation of others, which affects the per-
formance of sample selection. To alleviate the negative im-
pact of noisy labels, we introduce a class-independent multi-
binary classifier to regularize the class-dependent standard
softmax classifier.

Multi-binary Classifier Training

Multi-binary classifier (MBC) is widely used in open-set
recognition (Saito, Kim, and Saenko 2021) and open-set
domain adaptation (Zhu and Li 2021) (Saito and Saenko
2021) (Liu et al. 2019) tasks to identify unknown classes
samples. In open-set scenario, there exists outliers that do
not belong to the known classes in the training dataset, so
the above methods adopt MBC to learn a boundary between
inliers and outliers for each class. If all of the binary clas-
sifiers regard the input as negative, this sample has a high
probability of belonging to an unknown class. In this way,
they leverage the MBC to capture the notion of “none of
the above”, which avoids the closed-world assumption of the
standard softmax classifier (SSC).

Different from the above methods, we leverage the class-
independent property of MBC to regularize the SSC. Specif-
ically, the SSC encourages to improve the output of ground
truth and penalizes all others simultaneously, when the su-
pervision is noisy, the classification scores of all classes will
be affected due to the class-dependent property in SSC, re-
sulting in overfitting to noisy labels. However, the MBC
can alleviate this problem. The binary cross-entropy used
in MBC is a nonexclusive activation function, which is ded-
icated to recognizing one class only and misclassification
from one class will not affect others, improving the ability
of identifying the noisy labels during sample selection.

Class-Independent Regularization

Problem Definition

We consider a classification problem with a training set
D = {(x1, y1), ..., (xN , yN )}, where xi is an image and
yi ∈ {0, 1}C is a one-hot label over C classes which may
contains noise. Let G and Fs denote the feature extractor and
standard softmax classifier (SSC) of DNNs, respectively.
Therefore, the model’s output softmax probability of xi is
ps(xi) = Fs(G(xi)). In general, the objective function is

3277



Figure 2: (a) Overview of the proposed Class-Independent Regularization (CIR), which develops a heterogeneous adaptive co-
teaching strategy to cooperate multi-binary classifier (MBC) and standard softmax classifier (SSC) to select data with possibly
clean labels for each other. For the training of MBC, the clean samples are collected according to the prediction confidence of
the SSC by using the (c) Adaptive Thresholding Strategy, which dynamically set the threshold for each class according to their
learning status, and then the MBC is trained by (b) Negative Class Masking Strategy, which makes MBC learn an effective
boundary among the positive and the nearest negative classes by masking and only remaining two kinds of negative classes,
i.e., the most difficult class l̄ssc for SSC, and the randomly selected class l̄rand. Subsequently, the clean samples are identified
according to whether the predictions of the binary classifier with maximum confidence are consistent with their given labels.
Finally, SSC utilizes clean subset as labeled data and noisy subset as unlabeled data to perform semi-supervised learning.

empirical risk of cross-entropy loss, which is formulated by:

Lc = − 1

N

N∑
i=1

yi · log ps(xi), (1)

where N is the total number of samples and · denotes dot
product. Since yi contains noise, the model will overfit the
noisy labels and result a poor classification performance.

Existing methods try to divide training data into clean and
noisy subsets by designing a criterion for identifying clean
samples, but they rely heavily on the predictions from SSC.
We argue that the class-dependent nature of SSC might en-
large the effects of noisy labels. Therefore, we propose a
class-independent regularization equipped with a heteroge-
neous adaptive co-teaching strategy to mitigate the negative
impact of class-dependent property in SSC.

Heterogeneous Adaptive Co-teaching
The illustration of the proposed CIR is given in Fig. 2 (a).
Different from the traditional co-teaching strategy that de-

ploys two networks with the same architecture to find possi-
bly clean samples for each other (Han et al. 2018) (Yu et al.
2019), the proposed CIR employs a heterogeneous adap-
tive co-teaching strategy to learn with noisy labels. Specif-
ically, for the training of MBC, the clean samples are col-
lected according to the prediction confidence of the SSC
by an adaptive thresholding strategy (Fig. 2 (c)). To make
MBC learn an effective boundary among the positive and the
nearest negative classes, a negative class masking strategy
(Fig. 2 (b)) is applied to keep an appropriate number of neg-
ative classes for training. Subsequently, the clean samples
are identified according to whether the predictions of the bi-
nary classifier with maximum confidence are consistent with
their given labels. Finally, the SSC utilizes the clean subset
as labeled data and the noisy subset as unlabeled data to per-
form semi-supervised learning. In this cooperative manner,
MBC and SSC share the same feature extractor, the network
therefore can learn better feature representations by using
SSC to perform semi-supervised learning, which in turn pro-
motes the discriminative ability of MBC to distinguish clean
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samples from noisy ones.

Multi-binary Classifier Training To alleviate the nega-
tive effect of class-dependent SSC during sample selection,
we introduce MBC to regularize the SSC. Let Fm represent
MBC with C classes as Fm = {F 1

m, ..., FC
m}, where F k

m is
the k-th binary classifier with output pkm(xi) = F k

m(G(xi)).
pkm(z = 0|xi) and pkm(z = 1|xi) denote the output prob-
ability that the instance xi belongs to the k-th class or not,
respectively, where pkm(z = 0|xi) + pkm(z = 1|xi) = 1.

The clean subset used to train MBC is selected by SSC. A
naive way is to set a pre-defined threshold for all classes to
cut off high-confidence samples according to the SSC’s pre-
diction. However, this strategy can only make sure that high-
quality clean data contribute to the model training, while it
ignores a considerable amount of other clean data with low-
confidence, especially at the early stage of the training pro-
cess, where only a few clean data have their prediction con-
fidence above the threshold. To address this issue, we design
an adaptive thresholding strategy to dynamically determine
the threshold for each class according to their learning sta-
tus. As shown in Fig. 2 (c), the learning status of each class
can be reflected by counting the number of samples whose
predictions of SSC fall into this class, and meanwhile their
confidences are above a fixed pre-defined threshold τ :
σt(c) =

N∑
i=1

1(argmax(ps,t(xi)) = c) · 1(max(ps,t(xi)) ≥ τ),

(2)
where σt(c) represents the learning status of class c at train-
ing epoch t, and ps,t(xi) is the prediction of SSC for sam-
ple xi at training epoch t. The larger σt(c) means the better
learning status of class c. Then we normalize the σt(c) to
[0, 1] and use the normalized σt(c) to scale the fixed pre-
defined threshold τ , which is formulated by:

Tt(c) =
σt(c)

max
c

σt
· τ, (3)

where Tt(c) is a threshold of class c at training epoch t, and
can be adaptively adjusted during the training process ac-
cording to the learning status. A smaller σt(c) means the
class is hard to learn, therefore we set a lower threshold Tt(c)
to select clean samples for this class. As the number of train-
ing epochs increases, all classes are well trained and their
thresholds will all approach the fixed threshold τ . At train-
ing epoch t, given the image xi and its label li ∈ {1, ..., C},
we can obtain the clean subset as follow:

Ds
c ={(xsc

i , ysci )| argmax(ps,t(xi)) = li and
max(ps,t(xi)) ≥ Tt(argmax(ps,t(xi)))}.

(4)

Given clean subset Ds
c = {(xsc

1 , ysc1 ), ..., (xsc
Nsc

, yscNsc
)},

where Nsc is the total number of selected clean samples, we
apply a negative class masking strategy for MBC to learn
an effective boundary among positive and the nearest nega-
tive classes. As shown in Fig. 2 (b), for each training sample,
the corresponding negative classes are remained in two man-
ners: (1) The class l̄ssc

i that the SSC is most difficult to dis-
tinguish, i.e., the class is different from the ground-truth but

having the largest prediction score in SSC. (2) The class l̄rand
i

that is randomly selected from the category set excluding the
ground-truth label lsc

i and l̄ssc
i . Therefore, the loss function

used for training the MBC can be formulated as:

Lm =
1

Nsc

[ Nsc∑
i=1

− log(p
lsc
i
m(z = 0|xsc

i ))

−
∑
k∈l̄sc

i

log(pkm(z = 1|xsc
i ))

]
,

(5)

where l̄sc
i = {l̄ssc

i , l̄rand
i }.

Standard Softmax Classifier Training After each train-
ing of MBC, clean samples are selected according to
whether the predictions of the binary classifier with maxi-
mum confidence are consistent with their given labels. Given
the image xi and its label li ∈ {1, ..., C}, we can obtain the
clean subset as follow:

Dm
c = {(xmc

i , ymc
i )| argmax (pkm(z = 0|xi)) = li}, (6)

and the noisy subset is Dm
n = D\Dm

c . Then SSC utilizes the
clean subset Dm

c as labeled dataset and the noisy subset Dm
n

as unlabeled dataset to perform semi-supervised learning.
Similar to DivideMix (Li, Socher, and Hoi 2020), we im-

prove MixMatch (Berthelot et al. 2019) by label refinement
and label guessing on clean and noisy samples to perform
semi-supervised learning. Specifically, we first generate two
copies of each sample in Dm

c and Dm
n with weak augmen-

tation: D̂m
c,d = {(x̂mc

1,d, y
mc
1 ), ..., (x̂mc

Nmc,d
, ymc

Nmc
); d ∈ (1, 2)}

and D̂m
n,d = {x̂mn

1,d , ..., x̂
mn
Nmn,d

; d ∈ (1, 2)}.
Second, we perform label refinement for the labeled sam-

ple xmc
i by linearly combining the ground-truth label ymc

i
with the soft label pssoft generated by SSC’s prediction
ps(x̂

mc
i,d ) (averaged across two weak augmentations of xmc

i ),
which is guided by ωi (the prediction confidence of the bi-
nary classifier corresponding to its ground-truth label lmc

i ):

ỹmc
i = ωiy

mc
i + (1− ωi)pssoft , (7)

where

pssoft =
1

2

2∑
d=1

ps(x̂
mc
i,d ), (8)

ωi =
1

2

2∑
d=1

p
lmc
i
m (z = 0|x̂mc

i,d ). (9)

Third, we perform label guessing for the unlabeled sam-
ple xmn

i by averaging the SSC’s predictions of two weak
augmentations to produce more reliable guessed label:

ỹmn
i =

1

2

2∑
d=1

ps(x̂
mn
i,d ). (10)

Besides, we also apply temperature sharpening on ỹmc
i and

ỹmn
i to get ŷmc

i and ŷmn
i .

Then we aggregate the labeled and unlabeled images with
their refined and guessed labels respectively to form X̂ and
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Dataset CIFAR-10 CIFAR-100

Methods Symmetric Asymmetric Avg. Symmetric Asymmetric Avg.
20% 50% 80% 90% 10% 20% 30% 40% 20% 50% 80% 90% 10% 20% 30% 40%

SSC 82.7 57.9 25.5 16.8 88.8 86.1 81.7 76.0 64.4 61.8 37.3 8.2 3.5 68.1 63.6 53.3 44.5 42.5
MBC 81.6 73.7 53.5 20.4 90.4 87.0 86.2 82.6 71.9 60.3 38.2 17.1 4.3 71.5 69.6 64.9 53.8 47.5
MixUp 92.3 77.6 46.7 43.9 93.3 88.0 83.3 77.7 75.4 66.0 46.6 17.6 8.1 72.4 65.1 57.6 48.1 47.7
Forward 83.1 59.4 26.2 18.8 90.4 86.7 81.9 76.7 65.4 61.4 37.3 9.0 3.4 68.7 63.2 54.4 45.3 42.8
GCE 86.6 81.9 54.6 21.2 89.5 85.6 80.6 76.0 72.0 59.2 47.8 15.8 7.2 68.0 58.6 51.4 42.9 43.9
P-correct 92.0 88.7 76.5 58.2 93.1 92.9 92.6 91.6 85.7 68.1 56.4 20.7 8.8 76.1 68.9 59.3 48.3 50.8
M-correct 93.8 91.9 86.6 68.7 89.6 91.8 92.2 91.2 88.2 73.4 65.4 47.6 20.5 67.1 64.5 58.6 47.4 55.6
DivideMix 95.0 93.7 92.4 74.2 93.8 93.2 92.5 91.4 90.8 74.8 72.1 57.6 29.2 69.5 69.2 68.3 51.0 61.5
ELR 93.8 92.6 88.0 63.3 94.4 93.3 91.5 85.3 87.8 74.5 70.2 45.2 20.5 75.8 74.8 73.6 70.0 63.1
CIR 95.6 95.1 93.0 83.5 95.9 94.7 94.0 91.7 92.9 76.5 73.2 59.3 35.3 78.2 77.6 76.4 73.5 68.8
GCE+ 90.0 89.3 73.9 36.5 91.1 87.3 82.2 78.1 78.6 68.1 53.3 22.1 8.9 70.2 60.2 52.6 44.1 47.4
ELR+ 94.4 93.0 88.3 86.2 95.0 94.7 94.4 93.3 92.4 76.2 71.9 57.9 40.8 77.2 75.5 74.3 70.4 68.0
MOIT+ 94.1 91.8 81.1 74.7 94.2 94.3 94.3 93.3 89.7 75.9 70.6 47.6 41.8 77.4 76.4 75.1 74.0 67.4
Sel-CL+ 95.5 93.9 89.2 81.9 95.6 95.2 94.5 93.4 92.4 76.5 72.4 59.6 48.8 78.7 77.5 76.4 74.2 70.5
CIR+ 96.0 95.7 94.4 92.6 96.0 95.3 95.0 92.5 94.7 77.4 75.0 66.8 53.8 78.8 78.4 77.6 74.3 72.8

Table 1: Comparison with state-of-the-art methods in the test accuracy (%) on CIFAR dataset. The best results are in bold.

Û , and use MixMatch to generate X ′
and U ′

. The semi-
supervised losses are formulated as:

Lsup =
1

|X ′ |
∑

x,y∈X ′

y · log ps(x), (11)

Lunsup =
1

|U ′ |
∑

x,y∈U ′

∥y − ps(x)∥22. (12)

In summary, the total loss for training SSC can be com-
puted as follows:

Ls = Lsup + Lunsup + Lreg, (13)

where Lreg is a regularization term to regularize the net-
work’s output across all samples similar to DivideMix.

Training and Inference In summary, combining the train-
ing of MBC and SSC together, our final objective loss func-
tion is:

L = Lm + Ls. (14)

In the test stage, we utilize the ensemble of SSC and MBC
for getting the final classification score.

Experiments
Datasets and Implementation Details
Datasets and Noise Setting We extensively evaluate our
approach on CIFAR-10, CIFAR-100 (Krizhevsky, Hin-
ton et al. 2009), Clothing1M (Xiao et al. 2015) and
Food101N (Lee et al. 2018) datasets. Both CIFAR-10 and
CIFAR-100 contain 50K training images and 10K test im-
ages of size 32 × 32, which involve 10 classes and 100
classes, respectively. Clothing1M contains 1 million im-
ages of clothes with 14 categories. Food101N contains 310k
images of food with 101 categories. For CIFAR-10 and

CIFAR-100 datasets, following previous works (Li, Socher,
and Hoi 2020) (Liu et al. 2020) (Bai et al. 2021), we inject
two types of label noise: symmetric and asymmetric into the
dataset in a specified noise rate. The symmetric label noise
is generated by using a random one-hot vector to replace
the ground-truth label of one sample. The asymmetric label
noise is designed to mimic the structure of real-world label
noise, such as CAT↔DOG, BIRD↔AIRPLANE. For real-
world noisy datasets Clothing1M and Food101N, the overall
label accuracy are 61.54% and 80%, respectively.

Implementation Details For experiments on CIFAR
datasets, following previous work (Li, Socher, and Hoi
2020), we use an 18-layer PreAct ResNet architecture (He
et al. 2016) and train it using SGD with a momentum of
0.9, a weight decay of 0.0005, and a batch size of 128. The
network is trained for 300 epochs. We set the initial learn-
ing rate as 0.02, and reduce it by a factor of 100 after 150
epoch. The warm-up epochs are set to 10 for CIFAR-10 and
30 for CIFAR-100. For real-world datasets, following previ-
ous works (Li, Socher, and Hoi 2020) (Yao et al. 2021), we
use ResNet-50 with ImageNet pretrained weight and train
the network for 80 epochs. We set the initial learning rate as
0.002 and reduce it by a factor of 10 after 30 epochs. The
warm-up epochs are set to 5, and other experiment settings
are the same as CIFAR datasets. The hyperparameter τ used
in CIFAR is selected from {0.5, ..., 0.9}, and used in Cloth-
ing1M and Food101N are 0.4 and 0.2, respectively.

Comparison with State-of-the-art Methods
Results on CIFAR-10 and CIFAR-100 Datasets We
use the conventional training with the softmax cross-
entropy loss (SSC) and binary cross-entropy loss (MBC)
on noisy datasets as our baselines, and compare the pro-
posed CIR with recent state-of-the-art methods, includ-
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Figure 3: The performance of sample selection during train-
ing on CIFAR-100 with (a) symmetric and (b) asymmetric
noises. The first row are the Area Under a Curve (AUC)
scores vs. epochs, and the second row are the correspond-
ing test accuracy vs. epochs.

ing MixUp (Zhang et al. 2018), Forward (Patrini et al.
2017), GCE (Zhang and Sabuncu 2018), P-correct (Yi and
Wu 2019), M-correct (Arazo et al. 2019), DivideMix (Li,
Socher, and Hoi 2020), ELR (Liu et al. 2020), GCE
+ (Zhang and Sabuncu 2018), ELR+ (Liu et al. 2020),
MOIT+ (Ortego et al. 2021) and Sel-CL+ (Li et al. 2022).
Since the last four approaches apply contrastive learn-
ing (Chen et al. 2020) to reduce the risk of noise memoriza-
tion, we incorporate the similar techniques to further facil-
itate our CIR, which called CIR+. In CIR+, we empirically
find that the contrastive learning performs worse than the ro-
tation recognition (Komodakis and Gidaris 2018), so in this
paper, we introduce the rotation recognition as an auxiliary
task for feature learning enhancement. For fair comparisons,
the reported results are all obtained with one single model.
We report the average test accuracy over the last 10 epochs.
As shown in Table 1, we first observe that the test accu-
racy of MBC outperforms SSC in most cases. The margin is
clearer, especially on symmetric 80% and asymmetric 40%,
demonstrating that MBC is more robust to noisy labels.

For CIFAR-10, from moderate to severe label noise, CIR
performs better than the compared methods in most cases,
which exceeds the second-best method DivideMix by 2.1%
on average accuracy. And the performance can be further
boosted by CIR+, which exceeds the second-best method
Sel-CL+ by 2.3% on average accuracy. For the more dif-
ficult CIFAR-100, CIR achieves a significant improvement
over the second-best method ELR by 5.7% on average ac-
curacy. Moreover, CIR+ exceeds the second-best method
Sel-CL+ by 2.3% on average accuracy. In addition, we also
evaluate the performance of sample selection during train-
ing on CIFAR-100 with all noise rates, and the results are
shown in Fig. 3. We show the Area Under a Curve (AUC)
for clean/noisy classification from MBC during training (the
first row), and those curves prove that CIR can distinguish

Clothing1M Food101N

Methods Acc. Methods Acc.

SSC 69.21 SSC 84.51
MBC 71.55 MBC 84.74
MetaL 73.47 CNet-hard 83.47
P-correct 73.49 CNet-soft 83.95
DivideMix 74.30 DeepSelf 85.11
ELR 72.87 MCleaner 85.05
FINE 74.37 AFM 87.23
UPM 74.02 GJS 86.56
JNPL 74.15 PNP-hard 87.31
CAL 74.17 PNP-soft 87.50

CIR (Ours) 74.53 CIR (Ours) 87.71

Table 2: Comparison with state-of-the-art methods in the test
accuracy (%) on Clothing1M and Food101N datasets.

clean and noisy samples accurately and comprehensively as
training proceeds, even for high noise ratio, and the corre-
sponding test accuracy curve (the second row) also verifies
the effectiveness of CIR.

Results on Real-world Datasets We compare CIR with
two baselines (SSC and MBC) and the state-of-the-art meth-
ods, including MetaL (Li et al. 2019), P-correct (Yi and Wu
2019), DivideMix (Li, Socher, and Hoi 2020), ELR (Liu
et al. 2020), FINE (Kim et al. 2021a), UPM (Wang et al.
2021), JNPL (Kim et al. 2021b), CAL (Zhu, Liu, and Liu
2021) CNet (Lee et al. 2018), DeepSelf (Han, Luo, and
Wang 2019), MCleaner (Zhang, Wang, and Qiao 2019),
AFM (Peng et al. 2020), GJS (Englesson and Azizpour
2021) and PNP (Sun et al. 2022) on Clothing1M and
Food101N datasets. For fair comparisons, the reported re-
sults are all obtained with one single model. The results are
shown in Table 2. Similar to CIFAR, the test accuracy of
MBC also outperforms SSC, especially on the more chal-
lenge dataset Clothing1M, the performance of MBC exceeds
the SSC by 2.34%. Meanwhile, CIR consistently outper-
forms competing methods across all datasets and exceeds
the second-best methods by 0.16% and 0.21% on Cloth-
ing1M and Food101N, respectively.

Further Analysis
Ablation Study To verify the effectiveness of the CIR,
the ablation studies are conducted on CIFAR-10 with sym-
metric 20% (Sym-20%) and 50% (Sym-50%), asymmetric
20% (Asym-20%) and 30% (Asym-30%) noise rates, re-
spectively. The results are shown in Table 3.

As the baseline of CIR, we use the clean samples se-
lected by MBC to train SSC, where the samples used to train
MBC are selected by a pre-defined threshold, and the MBC
are trained only using l̄rand as negative class. As shown in
(1) of Table 3, the test accuracies are 93.5% (Sym-20%),
90.2% (Sym-50%), 93.2% (Asym-20%) and 91.8% (Asym-
30%), respectively, which exceed several approaches in Ta-
ble 1, demonstrating that MBC can select clean samples
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(d) Asymmetry-40%

Figure 4: Comparison of four criteria on CIFAR-100 with symmetric 20%, 50%, 80% and asymmetric 40% noise rates.

accurately. Since the MBC provides accurate supervision
for SSC training, after applying semi-supervised learning
(SSL), the performance can be further boosted (the results
are shown in (2)). Especially on symmetric noise, the net-
work regards more noisy samples as unlabeled data for train-
ing and the performance is improved by 1.9% (Sym-20%)
and 4.0% (Sym-50%), respectively.

To study the effect of adaptive thresholding (AT) strategy,
we select clean samples according to the adaptive thresh-
old instead of a pre-defined threshold on the basis of (2),
and the results are shown in (3). Compared with (2), the
performance is further improved, especially on asymmetric
noise. A possible reason is that the network is more diffi-
cult to identify clean samples from the asymmetric noisy
dataset because this noise type is designed to mimic the
structure of real-world label noise, resulting a large number
of clean samples have low-confidence. In this case, the pro-
posed AT strategy provides more effective supervision at the
early stage, and lays a solid foundation for the subsequent
training.

To study the effect of negative class masking (NCM) strat-
egy, we treat l̄ssc as negative class to train the MBC on the
basis of (3), and the results are shown in (4). Compared
with (3), the performance is further improved by 0.1%-0.7%,
demonstrating that the proposed NCM can enforce the bi-
nary classifiers learn an effective boundary among the posi-
tive and negative classes.

Robustness Analysis of Different Criteria To evaluate
the performance of sample selection, we compare the pro-
posed CIR with class-dependent based methods, i.e., small-
loss criterion (Han et al. 2018), GMM criterion (Li, Socher,
and Hoi 2020) and prediction consistency criterion (Yi and
Huang 2021) using one single model on four cases, i.e., sym-
metric 20%, 50%, 80% and asymmetric 40% noise rates on
CIFAR-100 dataset. We only use the selected clean samples

Methods/Noise Sym-20% Sym-50% Asym-20% Asym-30%
(1). Baseline 93.5 90.2 93.2 91.8
(2). (1)+SSL 95.4 94.2 93.9 92.1
(3). (2)+AT 95.5 94.4 94.3 93.8
(4). (3)+NCM 95.6 95.1 94.7 94.0

Table 3: Ablation study of CIR on CIFAR-10 with symmet-
ric 20% and 50%, asymmetric 20% and 30% noise rates.

to train the network, and report the F1 score (the first row)
and the corresponding test accuracy (the second row) during
training. The results are shown in Fig. 4. It can be seen from
the first row that CIR can select clean samples from noisy
ones accurately irrespective of the noise level. It is worth
noting that in asymmetric noise case, the F1 score of the
class-dependent based methods are all below 65%, but CIR
exceeds them by a large margin, which demonstrates that
CIR is tolerant to noisy labels. Meanwhile, the accurate sep-
aration also provides the accurate supervisions for the sub-
sequent training process. The corresponding test accuracy
curve also verifies the effectiveness of CIR.

Conclusion
In this paper, we propose the Class-Independent Regu-
larization (CIR) to alleviate the negative impact of noisy
label learning. Specifically, CIR regularizes the standard
class-dependent softmax classifier by introducing a class-
independent multi-binary classifier, where each binary clas-
sifier is dedicated to recognizing one class only. For train-
ing CIR effectively, we design a heterogeneous adaptive co-
teaching strategy that forces the class-independent and class-
dependent classifiers to focus on sample selection and image
classification, respectively, in a cooperative manner. Experi-
ments on synthetic and real-world noise benchmarks demon-
strate the effectiveness of CIR.
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