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ABSTRACT

We focus on unsupervised domain adaptation (UDA) in image segmentation. Existing works address this
challenge largely by aligning inter-domain representations, which may lead over-alignment that impairs
the semantic structures of images and further target-domain segmentation performance. We design a
scale variance minimization (SVMin) method by enforcing the intra-image semantic structure consistency
in the target domain. Specifically, SVMin leverages an intrinsic property that simple scale transformation
has little effect on the semantic structures of images. It thus introduces certain supervision in the tar-
get domain by imposing a scale-invariance constraint while learning to segment an image and its scale-
transformation concurrently. Additionally, SVMin is complementary to most existing UDA techniques and
can be easily incorporated with consistent performance boost but little extra parameters. Extensive exper-
iments show that our method achieves superior domain adaptive segmentation performance as compared
with the state-of-the-art. Preliminary studies show that SVMin can be easily adapted for UDA-based im-

age classification.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Image segmentation, which aims to assign class labels to every
pixel of an input image, has been a longstanding challenge in com-
puter vision research. Fully supervised approaches [17,36,38| have
achieved great successes at the price of large-scale densely-
annotated datasets [3,5] that are prohibitively expensive and time-
consuming to collect. One way of circumventing this constraint
is to leverage synthesized images with self-contained annota-
tions [21,22] for network training. On the other hand, the models
trained using synthesized images usually undergo a drastic perfor-
mance drop while applied to natural scene images [28,30].

Unsupervised domain adaptation (UDA) refers to the task of
training a model on labelled data of a source domain for achiev-
ing good performance in a target domain, with access to only un-
labelled data in the target domain. Based on the theoretical insight
that minimizing the inter-domain discrepancy lowers the upper
bound of errors in the target domain [1], state-of-the-art meth-
ods [32,35,37] address the UDA challenge largely by minimizing
the discrepancy between the source and target domains. Although
these prior works have achieved quite promising progress, they
may impair the semantic structures of images in the target do-
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main while striving to align the inter-domain representations des-
perately. In another word, the brute-force inter-domain alignment
may undesirably damage the integrity of semantic structures of
target domain images which is critically important to image seg-
mentation.

We propose a scale variance minimization (SVMin) technique
that leverages a scale-invariance constraint for preserving the se-
mantic structures of images in the target domain while perform-
ing the inter-domain alignment. The idea is to leverage an intrin-
sic property of images that scale transformations have minimal
effect on the semantic structures of images. The scale-invariance
constraint thus provides certain supervision within the target do-
main, which is enforced through segmenting an image and its scale
transformation concurrently as illustrated in Fig. 1. SVMin is or-
thogonal and complementary to the minimization of inter-domain
discrepancy by preventing over-alignment that often disintegrates
the semantic structures of images in the target domain. It has a
unique feature that it can work with most existing UDA-based
image segmentation networks (as a plug-in) with consistent per-
formance improvement but little extra parameters. Additionally,
SVMin can work well in UDA-based image classification.

The main contributions of this work are threefold. First, it iden-
tifies a scale-invariance constraint, an orthogonal component to
the classical inter-domain alignment that leverages certain target-
domain consistency for optimal unsupervised domain adaptation.
Second, it proposes a scale variance minimization (SVMin) tech-



D. Guan, J. Huang, S. Lu et al.

Original-Scale
Images

Scale Images

Source
only

Segmentation of Original- Segmentation of Rescaled

Pattern Recognition 112 (2021) 107764

Segmentation

Images Inconsistency

Source
only

Learning

Adversarial

SVMin (Ours)

Fig. 1. The proposed SVMin method introduces certain supervision in the unlabelled target domain, i.e. semantic segmentation of the same image at different image scales
should be largely the same: The Source only trained using the labelled source-domain images demonstrates good consistency across segmentation at the original and rescaled
source-domain images (Row 1), but it produces poor consistency while applied to target-domain images directly without adaptation (Row 2). The prevalent Adversarial
Learning [30] performs inter-domain alignment with better segmentation and consistency in the target domain, though it often over-aligns the two domains and disintegrates
semantic structures of images in the target domain (Rew 3). SVMin introduces a scale-invariance constraint by enforcing the consistency of semantic structures across image

scales, which achieves better results in the target domain (Row 4).

nique that achieves superior domain adaptive segmentation per-
formance by enforcing the consistency of semantic image struc-
tures in the target domain. Third, it demonstrates that SVMin can
work with most existing unsupervised domain adaptation tech-
niques with consistent performance boost, and it is generic and
can be easily adapted to other domain adaptive tasks such as im-
age classification.

The remainder of the paper is organized as follows. We review
existing works for UDA-base image segmentation and multi-view
learning in Section 2. The details of our proposed SVMin meth-
ods and the correlate theoretical insights into SVMin are presented
in Section 3. An extensive experimental evaluation of our method
in UDA-based image segmentation and classification is provided in
Sections 4 and 5 concludes this paper.

2. Related works

Unsupervised domain adaptation (UDA) refers to the task of
adapting a model from a labelled source domain to an unlabelled
target domain optimally [4,14]. One major driving force of UDA re-
search is for mitigating the constraint of data collection and an-
notation in deep neural network training, mainly suppressing the
data discrepancy among different domains. UDA has been widely
studied in various computer vision tasks such as image classi-
fication [12,20,40], object detection [33], and image segmenta-
tion [11,30,35]. Our methods focus on the task of UDA-based im-
age segmentation which will be carefully reviewed in the following
part.

UDA-based image segmentation aims to design UDA tech-
niques to handle the domain adaptive image segmentation prob-
lem. Most existing methods endeavour to suppress the inter-
domain discrepancy and align the feature representation across
domains, through either one-stage style transfer [7], adversarial
learning [28-30], self-training [39] or a two-stage processing pro-
cedure [9,32,37]. Hong et al. [7] designed a conditional genera-
tor to translate features of source images to target images and
a discriminator to distinguish them. Vu et al. [30] introduced
an entropy-based adversarial training approach to achieve intra-

domain entropy minimization and inter-domain alignment. Zou
et al. [39] proposed a confidence regularized self-training frame-
work formulated as regularized self-training loss minimization.
Zhang et al. [37] adapted pretrained model via AdaptSeg [28] to
the target domain through category-wise feature alignment guided
by category anchors. Kim [9] et al. encoded the texture in source
domain with a style transfer algorithm and translated the source
images with image translation networks. Wang et al. [32] mini-
mized the distance of the closest stuff and instance features be-
tween source and target domain in the intra-domain self-training
stage. Though the inter-domain alignment achieves certain success
in UDA-based image segmentation, it tends to lack regulations and
damage the integrity of semantic structures of target-domain im-
ages and further leads to degraded image segmentation.

Multi-view learning refers to the method that learners are
trained alternately on two or multiple different views with con-
fident predictions from the unlabeled target data. In the field
of UDA, these methods [23-25] are capable to generate pseudo
labels for unlabeled target data, which enables direct measure-
ment and minimizing the task loss (e.g., cross entropy loss in
classification/detection/segmentation) on unlabelled target domain.
Currently, multi-view learning methods enforce multiple classi-
fiers to become diverse/distinct by diversifying the learned pa-
rameters (e.g., kernel weights), through adversarial dropout [24],
classifier discrepancy maximization [25] or asymmetric classi-
fier tri-training [23], etc. In addition to utilizing multi-view
training for unlabeled target data pseudo labels generation,
Saito et al. [25] proposed to maximize the consensus of multi-
ple classifiers for UDA. Different from previous multi-view learning
methods that create multiple views on feature space by employ-
ing multiple classifiers, we directly create multiple views on input
space by resizing the input image with different ratios.

Our SVMin introduces a scale-invariance constraint (as super-
vision in the target domain) to regulate the inter-domain align-
ment, targeting to maintain the integrity of semantic structures
of target-domain images while aligning feature representation be-
tween the source and target domains. To the best of our knowl-
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Fig. 2. The framework of the scale variance minimization (SVMin) in image segmentation: The classical inter-domain alignment via adversarial learning (with adversarial
learning loss L4, (Xs, X; F, D)) may disintegrate the semantic structures of target-domain images and degrade the performance of image segmentation in the target domain.
SVMin introduces a scale-invariance constraint (with scale-invariance constraint loss Lg(x; F)) to preserve semantic structures of target-domain images while aligning
target-domain feature representation to source-domain feature representation. It enforces the scale-invariance constraint by predicting two segmentation maps for each

target-domain image and its scale transformation concurrently.

edge, this is the first work that leverages intra-domain invariance
of target-domain images for UDA-based image segmentation.

3. Proposed methods

The proposed scale variance minimization (SVMin) method reg-
ulates the inter-domain alignment by enforcing the consistency of
target-domain segmentation outputs across image scales as illus-
trated in Fig. 2. It also incorporates the idea of self-training to build
SVMin based target-domain retraining for better image segmenta-
tion, more details to be described in the following subsections.

3.1. Problem definition

This work focuses on UDA in image segmentation. Given im-
ages Xs c RE*Wx3 with C-class pixel-level semantic labels Ys c
(1,0)"W in a source domain and unlabelled images X; c RH*Wx3
in a target domain, the goal is to learn a image segmenta-
tion model F that performs well in the target domain. Inspired
by the domain-divergence minimization [1], the prevalent ap-
proaches [15,28,30] address the UDA challenge by minimizing the
discrepancy between the source and target domains. In the source
domain, it trains a model F under a supervised loss Lsg. In the tar-
get domain, F learns to extract domain-invariant features where a
minimaxing game is played between F and a domain discriminator
D under an adversarial learning loss £,4,. The overall objective is a
weighted combination of the two losses:

‘C(F, D) = Acseg(F) + )‘adv‘cadv(F, D)~ (1)

where A4, is the weight that aims to balance the two losses.
Under the guidance of the adversarial loss, the minimization
of the inter-domain discrepancy as defined in Eq. 1 strives to
align the feature representation between the source and target do-
mains. The brute-force inter-domain alignment may become nega-
tive when it alters the representation and disintegrates the seman-
tic structures of many easily-segmented images in the target do-
main. We define this problem as a breach of consistency of seman-
tic structures across scales, and propose a scale-invariance con-
straint to regulate the representation alignment across domains.
The proposed scale-invariance constraint is advantageous than
the adversarial learning approach in domain adaptive image seg-
mentation. The scale-invariance constraint is well-posed, i.e. the

target of segmentation consistency across images of different scales
is almost perfectly correct without considering the interpolation
artefacts as introduced by image scaling. The network learning to-
wards this objective introduces little side effect on image segmen-
tation. On the contrary, the inter-domain alignment via adversarial
learning is ill-posed as its objective is to align the feature distribu-
tions across domains. As the discrepancy across domains (e.g. the
scene layout) exists inherently, the inter-domain alignment often
crosses the line by disintegrating the semantic structures of target-
domain images and leading to degraded segmentation.

Let Xs/X; denote the input distribution of source/target domain,
and Ys/Y: denote the labels of source/target samples. Along with
the supervised training on the source domain (i.e., F(Xs) = J)s),
the objective is to find the optimal solution (i.e., F(X:) = ):) by
minimizing the inter-domain discrepancy. The adversarial learning
approach minimizes the inter-domain discrepancy via brute-force
inter-domain alignment at output space (i.e., F(X;) = F(Xs)). This
approach is sub-optimal in that target segmentation output F(A;)
may benefit from ): ~ )s, but suffer from ); # )s. As a result,
this training objective may deconstruct the target-domain semantic
structures consistency and destroy the optimal solution F(X;) = )
from the search space. To address this issue, the proposed scale-
invariance constraint enforces intra-image semantic structure con-
sistency (ie., R-V(F(R(xt))) = F(x¢)), which will naturally lead
target-domain semantic consistency. As the target of segmentation
consistency across image scales is almost perfectly correct with-
out considering the interpolation artefacts as introduced by image
re-scaling, the scale-invariance constraint helps reduce the search
space but keep the optimal solution (i.e., F(&;) = );) unaffected.

3.2. SVMin based inter-domain alignment

The proposed SVMin based inter-domain alignment aims to reg-
ulate inter-domain alignment by enforcing a scale-invariance con-
straint as illustrated in Fig. 2. In the source domain with pixel-
level annotations, it feeds each original training image xs to the
segmentation network F that outputs a segmentation map F(x;)
under a supervised segmentation loss Lseg. In the target domain
without pixel-level annotations, it feeds each original training im-
age x; and its scale transformation R(x;) to the F that outputs two
segmentation maps F(x;) and F(R(x;)) concurrently. Here, we em-
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ployed bilinear interpolation for image scaling. The scaling ratio is
randomly picked within certain ranges as described in the ensuing
Implementation Details.

The adversarial learning aims to minimize the inter-domain dis-
crepancy between F(xs) and F(x;) under an adversarial loss Lg,,.
To regulate the inter-domain alignment, we introduce a scale-
invariance constraint to minimize the discrepancy between F(x;)
and R~1(F(R(x))) under a scale-invariance constraint loss L.

Supervised loss In the source domain, we adopt the cross-
entropy loss as the supervised loss Lsg to optimize the segmenta-
tion network F. Given a source-domain image x; C Xs and its cor-
responding labels ys C Y5, Lseg can be formulated as follows:

1
Lseg(Xs, ¥s; F) = oW Z Z _ygh,w,c) log F (xs)wo) . (2)

hw ¢

Note we did not implement the scale-invariance constraint and
compute scale-invariance loss in the source domain as the strong
pixel-level supervision helps to keep the semantic image structures
well.

Adversarial learning loss We introduce a discrimination network
D to align the feature representation and minimize the discrep-
ancy between the source and target domains as illustrated in Fig. 2.
Given a source-domain image xs C Xs and a target-domain image
X¢ C X, the adversarial learning loss £,4, can be formulated as fol-
lows:

Lagy(Xs, Xt: F, D) = log(D(—F (x;) log F (x;)))
+ log(1 — D(=F(x;) log F (x¢))). 3)
Scale-invariance constraint loss We design a scale-invariance
constraint loss to enforce the consistency of target-domain seman-
tic structures and regulate the adversarial learning loss in inter-

domain alignment. Given a target-domain image x; C X;, the scale-
invariance constraint loss Lg; is formulated as:

Lale ) = e 30 FGO™) — R ER@E)™O)]. (4)

hw,c

Training objective The objective function of the proposed SVMin
based adversarial learning model (SVMin_AL) can thus be formu-
lated by summing up the three training losses as follows:

[:SVMilLAL (F, D) = Acseg(F) + )‘adv‘cadv(Fs D) + Asiﬁsi(F)~ (5)

where Ag; is the weight that aims to balance the supervised loss
and scale-invariance constraint loss.

The optimization of the SVMin model Fsypin a1 can be for-
mulated as:
Fsvmin a1 = arg minmax Lsywiin i (F. D). (6)

3.3. SVMin based target-domain retraining

Self-training has been widely explored as an effective fine-
tuning strategy in domain adaptive image segmentation [13,39].
It works by generating pseudo labels ¥; from confident pre-
dictions in the target domain. Current state-of-the-art ap-
proaches [9,32,35] explore intra-domain knowledage via retrain-
ing in target domain with generated pseudo labels. We fine-tune
Fsymin_a by including a target-domain retraining loss beyond the
scale-invariance loss to explore more knowledge in the target do-
main. Specifically, we employ the scale-invariance loss to enhance
the consistency of target-domain semantic structures during the
retraining process. Given a target-domain image x; c X; and the
generated pseudo labels j; c ¥; from [39], the target-domain re-
training loss can be formulated as follows:

Lo (X, 96 F) = gy Shw e 9 log F(x79) (7)
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Combining the target-domain retraining loss and scale-

invariance loss, the Fywin a.  €an be fine-tuned to obtain final
model as follows:
Lsymin_ALTR = arg min (Ligst (Fsymin_at) + Lsi (Fsvmin_aL))- (8)

SVMin_AL

3.4. Theoretical insights

The scale-invariance constraint is inherently connected with a
contemporary UDA theory. It is actually an example of domain-
divergence minimization [1]:

Proposition. The SVMin can be modelled as a cross-domain H-
divergence minimization problem that can be optimized with L1-
normalization.

Proof: The scale-invariance constraint is inherently connected
with the contemporary domain adaptation theory [1]. Consider a
segmentation model F in hypothesis space Hr over the output-
space representation F(x) on source domain input distribution A
and target domain input distribution X;. Let €, (F) denote the er-
ror of a hypothesis F € Hf for Xs, €x, x, denote the constant error
of the single ideal hypothesis for both X; and A;, and dy (Xs, &)
denote the cross-domain #-divergence between X; and A;. The tar-
get error €y, (F) of hypothesis F is bounded by Ben-David et al. [1]:

€x (F) < €y, (F) + €x, x + dy (X, Xp). 9)

Because the first and second terms correspond to the well-studied
supervised learning problems, the goal of UDA is to reduce the
third term, i.e., the domain divergence:

dy(Xs, X) = 2sup| Pr [h(F(xs)) =1] - Pr [h(F(x)) =1]|.
hen Xs~ Xs X~ X

(10)

We measure the divergence between two distributions s and
X: based on the segmentation variance (SV) at different image
scales. Let h be a domain classifier that decides the binary domain
label of x by the value of its segmentation variance (SV) at differ-
ent image scales, namely,

_ [ v =,
h(F(x)) = {0, otherwise (11)
where SV (x) = |F(x) — R-'(F(R(x)))| is the segmentation variance
at different image scales and & is a small threshold to determine
the domain label.

Given these equations, we show that the scale-invariance con-
straint is related to dy(Xs, A;), where Eq. (10) can be rewritten
as:

dy (X5, &) = 2sup| Pr [h(F(xs)) =1] = Pr [h(F(x:)) =1]]
hep X~ % X A

=2sup | PrylSV(xs)zS]— PrX[SV(Xr)zéll
FeHr Xs~ Xs Xe~ At

<2sup Pr [SV(x) > £]. (12)
FeMp X~ &

The last inequality in Eq. (12) holds because the segmentation
variance (SV) at different image scales is very small on source-
domain samples, where there are sufficient labelled training data
for minimizing supervised losses. Therefore, the objective is to
learn a model F to achieve lowest upper bound of cross-domain
‘H-divergence:

minger, Pr [IF(x) - RF(R(x:))))| = &l (13)
Thus, the proposed SVMin can be modeled as a cross-domain #-

divergence minimization problem that can be optimized with L1-
normalization.
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Table 1
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Comparisons of our method (SVMin_AL_TR) with the state-of-the-art over GTA5 — Cityscapes: our method outperforms state-of-the-art clearly. V and R refer
to VGG16 and ResNet101 backbones.

GTA5 — Cityscapes

Methods model road side. build. wall fence pole light sign vege. terr. sky pers. rider car truck bus train motor bike mloU
AdaptSeg [28] V 87.3 29.8 786 21.1 182 225 215 110 79.7 296 713 46.8 6.5 80.1 230 269 00 106 03 350
AdvEnt [30] V 86.9 287 787 285 252 17.1 203 109 80.0 264 702 47.1 84 815 260 172 189 11.7 1.6 36.1
CLAN [15] \Y% 88.0 30.6 79.2 234 20.5 26.1 23.0 148 81.6 345 720 458 7.9 80.5 26,6 299 00 107 0.0 366
CrCDA [8] \Y% 86.8 37.5 80.4 307 18.1 26.8 253 151 81.5 309 721 52.8 19.0 821 254 292 101 158 3.7 39.1
BDL [13] \Y% 89.2 409 81.2 291 19.2 142 290 196 83.7 359 80.7 54.7 233 827 258 28.0 23 257 199 413
FDA [35] \% 86.1 35.1 80.6 30.8 204 275 300 26.0 821 303 736 52.5 21.7 81.7 240 30.5 299 146 24.0 422
SIM [32] \Y% 88.1 358 83.1 258 239 292 288 286 83.0 36.7 823 53.7 22.8 823 264 386 00 196 17.1 424
Ours \Y% 89.7 42.1 82.6 293 225 323 355 322 84.6 354 772 61.6 219 862 26.1 36.7 7.7 169 194 44.2
AdaptSeg [28] R 86.5 36.0 79.9 234 233 239 352 148 834 333 756 585 27.6 73.7 325 354 39 30.1 281 424
CLAN [15] R 87.0 27.1 79.6 273 233 283 355 242 83.6 274 742 58.6 28.0 762 331 36.7 67 319 314 432
AdvEnt [30] R 89.4 33.1 81.0 266 26.8 272 335 247 839 36.7 788 58.7 30.5 84.8 385 445 1.7 31.6 324 455
IDA [18] R 90.6 37.1 82.6 30.1 19.1 295 324 206 857 405 79.7 587 31.1 863 315 483 00 302 358 463
PatAlign [29] R 92.3 51.9 82.1 292 25.1 245 338 330 824 328 822 58.6 27.2 843 334 463 22 295 323 465
CRST [39] R 91.0 554 80.0 337 214 373 329 245 850 34.1 808 57.7 24.6 84.1 27.8 30.1 269 26.0 423 47.1
BDL [13] R 91.0 447 842 346 27.6 30.2 360 360 85.0 43.6 830 58.6 31.6 833 353 49.7 33 288 356 485
CrCDA [8] R 924 553 823 312 29.1 325 332 356 83.5 348 842 589 322 847 406 46.1 2.1 31.1 327 486
SIM [32] R 90.6 44.7 84.8 343 28.7 316 350 376 847 433 853 57.0 31.5 83.8 426 485 19 304 39.0 492
CAG [37] R 904 51.6 83.8 342 27.8 384 253 484 854 382 781 58.6 34.6 847 219 427 411 293 372 502
TIR [9] R 929 550 853 342 31.1 349 40.7 340 852 40.1 87.1 61.0 31.1 825 323 429 03 364 46.1 50.2
FDA [35] R 92.5 533 824 265 27.6 364 406 389 823 39.8 780 62.6 344 849 341 53.1 169 27.7 464 505
Ours R 929 56.2 843 340 22.0 43.1 50.9 48.6 858 420 789 66.6 269 884 352 46.0 109 254 396 515

4. Experiments
4.1. Datasets

We evaluate our approach over two challenging UDA-based
image segmentation tasks: GTA5 — Cityscapes and SYNTHIA —
Cityscapes. To demonstrate the genericity of our approach, we per-
form preliminary evaluations over a UDA-based image classifica-
tion task. The three tasks involves four datasets as listed.

Cityscapes [3] as the target-domain dataset in our experiment
has been widely used in image segmentation. It consists of 2975
real-world images for training and 500 for evaluation.

GTAS5 [21] contains 24,966 high-resolution synthesized images.
It shares 19 common pixel classes with the Cityscapes, the target-
domain dataset as used in our experiments.

SYNTHIA [22] contains 9400 synthetic images. It shares 16
common pixel classes with the Cityscapes as used in our experi-
ments [28,30,35].

VisDA [19] is a domain adaptive image classification dataset. It
consists of a training set with synthetic renderings of 3D models,
a validation and test set with real-world images.

4.2. Implementation details

Similar to [28,30,35], we use Deeplab-V2 architecture [2] as the
segmentation network F and apply atrous spatial pyramid pool-
ing to the extracted feature maps with sampling rate fixed at
6; 12; 18; 24. DeeplLab-v2 [2] is built on a deep convolutional neu-
ral network for feature map extraction. It employs dilated convo-
lution in the last two convolution layers to enlarge the receptive
field. In addition, it introduces atrous spatial pyramid pooling to
capture image context information by using multi-scale parallel fil-
ters. For the discriminator network D, we follow [28,30,32] and
employ 5 convolution layers with kernel size 4 x 4, stride of 2 x 2,
and channel numbers of {64, 128, 256, 512, 1} for each layer. Dur-
ing training, we utilize classical stochastic gradient descent algo-
rithm to optimize our networks with a momentum of 0.9 and a
weight decay of 1e — 4. The initial learning rate is set at 2.5e — 4
and decayed by a polynomial policy with a power of 0.9 as illus-
trated in Chen et al. [2]. The balancing weight A, is empirically
set to 0.001 following [28,30] and Ay is set to 1. The scaling ra-

tio is randomly selected in the range [0.8,1.2]. For the comparison
with state-of-the-art methods, we evaluate two network backbones
including VGG16 [27] and ResNet101 [6] both pre-trained on Im-
ageNet. All experiments are implemented on a single Tesla V100
GPU by employing PyTorch toolbox, and the maximum memory
usage is 12 GB.

4.3. Comparison with state-of-art

We evaluate our approach over two widely studied domain
adaptive image segmentation tasks GTA5—Cityscapes and SYN-
THIA— Cityscapes, and compared it with a number of state-of-the-
art methods as shown in Tables 1 and 2. We adopted two net-
work backbones ResNet101 and VGG16 and the widely used evalu-
ation metric, i.e, mean intersection over union (mloU), in evalua-
tions. As the two tables show, our approach outperforms all state-
of-the-art methods clearly and consistently across the two tasks
and the two network backbones. The superior segmentation per-
formance is largely thanks to the proposed scale-invariance con-
straint that introduces certain supervision and endeavours to keep
the integrity of image semantic structures while aligning the rep-
resentation of target domain to that of source domain. Without
the scale-invariance constraint, state-of-the-art methods may over-
align representation which disintegrates the semantic structures
and degrades the segmentation of images in the target domain.

We provide qualitative results in the GTA5 — Cityscapes task
in Fig. 3. It is obvious that segmentation inconsistency maps (seg-
mentation variance across different image scales) can well reflect
the image segmentation performance, where the segmentation of
regions with high segmentation inconsistency (darker) is normally
bad and noisy while that of regions with low segmentation incon-
sistency (lighter) is normally good and clear. In other words, the
segmentation inconsistency map can actually serve as a good in-
dicator to show how well the segmentation is. Our proposed ap-
proach utilizes this property and minimizes segmentation incon-
sistency effectively, leading to superior segmentation performances
as illustrated in Fig. 3. As a comparison, state-of-the-art UDA ap-
proaches CRST [39], TIR [9] and FDA [35] produce very promis-
ing segmentation, but they cannot segment target images consis-
tently across different image scales. Specifically, the segmentation
around high variance regions is clearly noisy with various segmen-
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Table 2
Comparisons of our method (SVMin_AL_TR) with the state-of-the-art over the task SYNTHIA — Cityscapes: our method surpasses state-of-the-art by large
margins. V and R refer to VGG16 and ResNet101 backbones. mloU and mloU* are computed over 16 and 13 pixel classes, respectively.

SYNTHIA — Cityscapes

Methods model road side. build. wall fence pole light sign vege. sky pers. rider car bus motor bike mloU mloU*
AdaptSeg [28] V 789 292 755 - - - 0.1 48 726 767 434 88 711 160 36 84 - 376
AdvEnt [30] \Y% 679 294 719 63 03 199 06 26 749 749 354 96 678 214 4.1 155 314 366
CLAN [15] \Y% 80.4 30.7 747 - - - 14 80 771 79.0 465 89 738 182 22 99 - 393
CrCDA [8] \Y% 745 305 786 66 07 212 23 84 774 791 459 165 731 241 96 142 352 411
BDL [13] \Y% 720 303 745 01 03 246 102 252 80.5 80.0 547 232 727 240 75 449 390 46.1
FDA [35] \Y% 842 351 780 61 04 270 85 221 772 796 555 199 748 249 143 407 405 473
Ours \Y% 825 315 776 76 07 260 123 284 794 821 589 215 821 221 96 49.2 419 49.0
PatAlign [29] R 824 380 786 87 06 260 39 111 755 846 535 216 714 326 193 317 40.0 465
AdaptSeg [28] R 843 427 775 - - - 47 7.0 779 825 543 21.0 723 322 189 323 - 46.7
CLAN [15] R 813 37.0 80.1 - - - 16.1 137 782 815 534 212 73.0 329 226 307 - 47.8
AdvEnt [30] R 856 422 797 87 04 259 54 81 804 841 579 238 733 364 142 330 412 480
IDA [18] R 843 377 795 53 04 249 92 84 80.0 841 572 230 780 381 203 365 41.7 489
TIR [9] R 92.6 532 792 - - - 1.6 75 786 844 526 200 821 348 146 394 - 49.3
CrCDA [8] R 86.2 449 795 83 07 278 94 118 78.6 865 572 26.1 768 399 215 321 429 500
CRST [39] R 67.7 322 739 107 1.6 374 222 312 808 805 608 29.1 828 250 194 453 438 50.1
BDL [13] R 86.0 46.7 803 - - - 141 116 792 813 541 279 737 422 257 453 - 514
SIM [32] R 83.0 440 803 - - - 171 158 805 81.8 599 331 702 373 285 458 - 52.1
FDA [35] R 793 350 732 - - - 199 240 617 826 614 31.1 839 408 384 511 - 52.5
CAG [37] R 847 408 817 7.8 00 351 133 227 845 776 642 278 809 197 227 483 445 526
Ours R 89.8 47.7 823 144 02 371 354 221 851 849 658 256 86.0 305 31.0 507 493 56.7

(a) Image + GT  (b) CRST [39] (c) TIR [9] (d) FDA [35] (e) Ours

Fig. 3. Qualitative segmentation for GTA5 — Cityscapes: Column (a) shows target-domain sample images at the top and the corresponding ground-truth segmentation
at the bottom. Column (b)-(e) show the segmentation (at the bottom) as produced by state-of-the-art UDA approaches CRST [39], TIR [9], FDA [35] and our proposed
method (SVMin_AL_TR), as well as the corresponding inconsistency maps as computed between the segmentation of original-scale images and re-scaled images (at the top),
respectively. Best viewed in colors.
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SVMin (Ours) SVMin_AL (Ours)

Fig. 4. t-SNE [16] visualization of feature distribution for Cityscapes images in the target domain: Each color represents one specific semantic classes of image pixels with a
digit showing the class centre. o2 and abz on the top of each graph are intra-class variance and inter-class distance of the corresponding feature distribution. Our approach
outperforms the prevalent adversarial learning (AL) [30] in UDA qualitatively and quantitatively.

Table 3

Ablation study of our approach over GTA5 — Cityscapes task: SVMin outperforms
adversarial learning (AL) clearly, and the two approaches are complementary (us-
ing ResNet101 backbone). SVMin_AL based target-domain retraining (SVMin_AL_TR)
further improves the target-domain retraining (TR) method in model fine-tuning.

Inter-domain alignment  target-domain retraining  mloU

Method Lieg  Laay Lsi Le Ly

Baseline v 36.6
AL [30] v v 43.8
SVMin v v 46.5
SVMin_AL v v v 48.1
SVMin_AL + TR v v v v 50.6
SVMin_AL_TR v v v v v 51.5

tation errors. In contrast, our approach segments target images
with lower segmentation variance, leading to better and smooth
segmentation output. Besides, most segmentation variance in our
approach locate at the category transition areas, which are natu-
rally very difficult to correctly or consistently segment, even for
fully supervised models.

4.4. Ablation studies

We perform extensive ablation studies to demonstrate how the
scale-invariance constraint improves UDA and complements ad-
versarial learning in inter-domain alignment. As listed in Table 3,
we trained 6 models for the task GTA5—Cityscapes including
(1) Baseline that is trained using Supervised Loss Lseg(Xs,ys: F)
only with no adaptation, (2) AL [30] that is trained using
Adversarial Learning Loss Lgg,(Xs,X¢; F,D) and Lseg(Xs, ys; F) only,
(3) SVMin that is trained using Scale-Invariance Constrain Loss
Lgi(xt; F) and Lseg(xs, ys; F) only, (4) SVMin_AL that is trained us-
ing all three losses Lseg(Xs,ys: F), Lagy(Xs,Xe; F,D) and Lg(xt; F),
(5) SVMin_AL+TR that fine-tunes the SVMin_AL model using
the target-domain retraining (TR) loss Lt (X¢,J::F), and (6)
SVMin_AL_TR that fine-tunes the SVMin_AL model via combining
Lyt (X, Ye: F) and L (x¢: F).

We applied the six models to conduct evaluation and
Table 3 shows experimental results. It can be seen that the Base-
line does not performs well due to the discrepancy across do-
mains. In addition, both AL and SVMin outperform the Base-
line by large margins, demonstrating the importance of UDA for
minimizing domain discrepancy. Nevertheless, SVMin outperforms
AL clearly. This shows that scale-invariance constraint (for target-
domain consistency) is more effective than adversarial learning
(for inter-domain alignment) in UDA-based image segmentation.
Further, SVMin_AL performs clearly the best, demonstrating that
the two orthogonal UDA approaches are actually complementary
to each other. Finally, SVMin_AL_TR outperforms SVMin_AL+TR,

49
47
45

——\Without adaptation
43

ouU

#-Scale-invariance model

mi

11

0.2 0.4 0.6 0.8 1 ik 1.4 1.6 1.8
Weight factor Asi

Fig. 5. Parameter learning of weight factor A; in Eq. (5) over GTA5 — Cityscapes:
The segmentation performance is robust to various weight factors, which further
demonstrates the scale-invariance constraint loss is a well-posed objective (using
ResNet101 backbone).

Table 4
The scale-invariance constraint loss Lg; can be easily incorporated into exist-
ing UDA networks as a plug-in with consistent performance improvement.

GTA5 — Cityscapes SYNTHIA — Cityscapes

Method base  +Lg gain base  +Lg; gain
Adapt-SegMap (28] 424 471 +47 467 505 +3.8
MinEnt [30] 423 469 +46 442 494 452
CLAN [15] 432 477 +45 478 517 439
AdvEnt [30] 438 481 +43 476 518 +42

demonstrating the importance of the scale-invariance constraint in
model fine-tuning in the target domain.

For the Cityscapes images in the target domain, Fig. 4 shows the
feature distributions of 19 semantic pixel classes that are produced
by the first 4 ablation study models from left to right, respectively.
As Fig. 4 shows, both qualitative t-SNE visualization and quantita-
tive intra-class variance and inter-class distances are well aligned
with the image segmentation in Table 3.

4.5. Parameter learning

We study the impact of the weight factor Ay in Eq. (5) that is
used to control the scale invariance constraint. Fig. 5 shows that
the segmentation performance is robust to Ay in SVMin model
(i.e, A =0.2~1.8 > mloU = 45.8 % ~ 46.5 %). These results fur-
ther demonstrate that the scale-invariance constraint loss is a well-
posed objective as it is almost perfectly correct without consid-
ering the interpolation artefacts as introduced by image rescal-
ing. On the contrary, the segmentation performance is very unsta-
ble to the weight factor of adversarial learning loss (X,4,) around
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Comparison of our method (SVMin_AL_TR) with the state-of-the-art in domain adaptive image classification over VisDA17: our method
achieved superior classification over both validation data and test data.

Method data aero  bike bus car horse  knife  motor  person plant skate. train  truck mean
CDAN [31]  Val - - - - - - - - - - - - 71.4
MCD [25] Val 87 609 837 64 88.9 79.6 84.7 76.9 88.6 40.3 83 25.8 71.9
ADR [24] Val 878 795 837 653 923 61.8 88.9 73.2 87.8 60 855 323 74.8
SAFN [34] Val 936 613 841 706 941 79.0 91.8 79.6 89.9 55.6 89.0 242 76.1
SWD [10] Val 90.8 825 817 705 917 69.5 86.3 775 87.4 63.6 85.6 292 76.4
GTA [26] Val - - - - - - - - - - - - 771
CRST [39] Val 880 792 61.0 600 875 81.4 86.3 78.8 85.6 86.6 73.9 688 78.1
Ours Val 940 709 861 754 940 89.5 90.2 82.1 93.1 79.0 825 257 80.2
GTA [26] Test - - - - - - - - - - - - 72.3
Ours Test 89.5 465 86.6 929 839 72.7 76.9 68.6 95.9 60.3 747 462 74.6

the small empirical value 0.001 [28,30] in AL model, (i.e., Ayy, =
0.0002 ~ 0.0018 — mloU = 39.6 % ~ 43.8 %). This is largely be-
cause the inter-domain alignment via adversarial learning is ill-
posed as its objective is to align the feature space across domains.

4.6. Discussion

The proposed scale-invariance constraint has two unique fea-
tures in UDA. First, it can be easily incorporated into existing UDA
methods as a plug-in with consistent performance boost but lit-
tle extra parameters and computation. We evaluate this feature
over UDA-based image segmentation task by including the scale-
invariance constraint into several UDA methods as listed in Table 4.
We can see that the inclusion of the scale-invariance constraint
loss Lg; improves the image segmentation of state-of-the-art meth-
ods consistently for both GTA5 — Cityscapes and SYNTHIA —
Cityscapes. As the inclusion of Lg; has little effect over the network
structures, the inference has little extra parameters and computa-
tion once the model is trained.

Second, the proposed scale-invariance constraint is generic and
can apply to other tasks with slight adaptation. We validate this
feature by conducting a preliminary UDA-based image classifica-
tion experiment over VisDA [19]. Since the original and scaled im-
ages produce class probability vectors of the same size, the scale-
invariance constraint loss Ly is re-defined as follows:
Lol ) = & X IFG0)© — F(R())|. (14)

Cc

In the experiment, we used the VisDA training set as the source
domain and the validation set as the target domain as in Lee et al.
[10], Sankaranarayanan et al. [26], Zou et al. [39]. Additionally, we
also evaluate the model on the VisDA test set following [26] as
shown in Table 5. It is clear that SVMin outperforms state-of-the-
art CRST [39] by 2.1 on the validation set and GTA [26] by 2.3 on
the test set, demonstrating its genericity in different domain adap-
tive tasks.

5. Conclusions

This paper presents a scale variance minimization (SVMin)
technique that exploits a scale-invariance constraint as certain su-
pervision to improve domain adaptive semantic segmentation per-
formance. SVMin leverages an intrinsic property of images that
simple scale transformation has little effect on the semantic struc-
tures of images. It enforces the semantic structures of images by
imposing consistency over the segmentation of an image and its
scale transformation, hence achieving superior semantic segmen-
tation performance. In addition, the scale-invariance constraint is
generic and can be extended to other domain adaptive computer
vision tasks such as image classification.

On the other hand, the proposed scale-invariance is essentially
an intra-image constraint. It exploits the semantic consistency

among the segmentation of the same image of different scales,
but ignores the discrepancy across domains. It is therefore or-
thogonal and complementary to the adversarial learning based do-
main adaptation and alignment techniques. In the future work, we
will investigate how to optimally fuse the proposed scale invari-
ance constraint and domain alignment technique so that the do-
main adaptation can leverage both intra-domain and inter-domain
information concurrently. In addition, we will study how to ex-
tend SVMin to transform unsupervised domain adaption to semi-
supervised/weak-supervised domain adaptation so as to achieve
comparable performance with fully-supervised learning.
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